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The droplet collision algorithm of O’Rourke is currently the standard approach
to calculating collisions in Lagrangian spray simulations. This algorithm has a cost
proportional to the square of the number of computational particles, or “parcels.”
To more efficiently calculate droplet collisions, a technique applied to gas dynamics
simulations is extended for use in sprays. For this technique to work efficiently, it
must be able to handle the general case where the number of droplets in each parcel
varies. The present work shows how the no-time-counter (NTC) method can be
extended for the general case of varying numbers of droplets per parcel. The basis of
this improvement is analytically derived. The new algorithm is compared to closed-
form solutions and to the algorithm of O’Rourke. The NTC method is several orders
of magnitude faster and slightly more accurate than O’Rourke’s method for several
test cases. The second part of the paper concerns implementation of the collision
algorithm into a multidimensional code that also models the gas phase behavior and
spray breakup. The collision computations are performed on a special collision mesh
that is optimized for both sample size and spatial resolution. The mesh is different
every time step to further suppress the artifacts that are common in the method of
O’Rourke. The parcels are then sorted into cells, so that a list of all the parcels in a
given cell are readily available. Next, each cell is individually checked to see if it is so
dense that a direct collision calculation is cheaper than the NTC method. The cheaper
method is applied to that cell. The final result is a method of calculating spray droplet
collisions that is both faster and more accurate than the current standard method of
O’Rourke. c© 2000 Academic Press

INTRODUCTION

Stochastic collision models are commonly used in Lagrangian simulations of particulate
and spray flows. Numerical results suggest that collision processes in sprays have a great in-
fluence on the average drop size [1]. Unfortunately, droplet collisions can be very expensive
to calculate. The direct simulation of every drop would result inN2 collision computations
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every time step, whereN is the number of drops in the spray. This is prohibitively expensive
for most purposes. The approach of Dukowicz can reduce this cost by representing the spray
with a reduced number of computational particles [2]. Each particle, called a “parcel” of
drops, representsqi physical droplets. This approach, when applied to rarefied gas dy-
namics simulations, is commonly known as the direct simulation Monte Carlo (DSMC)
technique [3]. However, in gas dynamics calculations, the value ofqi is a constant. In spray
modeling, the size of the droplets varies enormously. To apportion computational resources
efficiently, many spray models letqi range over several orders of magnitude [4].

To calculate collisions, almost all DSMC spray models currently use an algorithm similar
to that of O’Rourke [5]. O’Rourke’s collision algorithm has long been the preferred method
of calculating spray collisions in Lagrangian spray simulations. This collision algorithm is a
critical component of the KIVA suite of codes originating from Los Alamos Laboratories [4].
Additionally, this collision algorithm is widely used in commercial CFD codes. No other
collision algorithm has been as useful or as popular as O’Rourke’s. The current work
presents the next generation of spray collision modeling that addresses most of the remaining
shortcomings in O’Rourke’s algorithm.

O’Rourke’s collision algorithm is consistent with the DSMC method, using a stochas-
tic algorithm to determine droplet collisions. O’Rourke’s collision algorithm is a type of
“direct” technique, because it considers all possible collision partners. As is commonly
done in gas dynamics calculations, O’Rourke’s algorithm only allows parcels within the
same gas-phase cell to collide. O’Rourke assumes that there is a probability of any droplet
colliding with any other droplet given by

pi, j = σi, j vi, j1t

V− . (1)

The variablevi, j represents the relative velocity between the two droplets, andV− represents
the cell volume. In this equation,σi, j is the collision cross section of the two drops and is
defined as

σi, j = π(ri + r j )
2. (2)

Thus, the mean expected number of collisions between a droplet in parceli and the drops
in parcel j is given by

µ̄ = qj
σi, j vi, j1t

V− , (3)

where the number of droplets in parcelj is qj . O’Rourke then determined the number of
collisions by sampling from a Poisson distribution with a mean of ¯µ . A similar approach
has also been used in rarefied gas dynamics calculations and is known as the “direct”
method of Kac [3]. There are two differences between the schemes: (1) O’Rourke allows
for the possibility of a droplet from parceli striking more than one droplet in parcelj and
samples the number of collisions from the Poisson distribution; (2) O’Rourke’s algorithm
is generalized for the case ofqi 6=qj . Bird [3] points out that the direct approach of Kac
incurs a cost proportional toN2

p , whereNp is the number of parcels in a cell. This is also
true of O’Rourke’s method.

To allow for a sufficient number of computational particles, algorithms with a cost pro-
portional toN2

p must be avoided. Such methods are too expensive for accurate statistical
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representations of sprays. Lagrangian spray calculations must represent the spray popula-
tion in two or three spatial dimensions, a temporal dimension, a multidimensional velocity
space, and a drop-size dimension. In order to fully represent all of these characteristic di-
mensions, a model should use a very large number of computational particles. However,
the cost ofN2

p algorithms is prohibitive for large numbers of particles.
Kitron et al. [6] applied the time-counter method, which has a cost linearly proportional

to Np, to sprays. However, Kitron used a fixed number of drops in each parcel. Also, the
time-counter method, though historically important, has been faulted for its susceptibility to
statistical scatter. The creator of the time-counter method described the scheme as “obsolete”
even before the work of Kitron was published [7]. In any case, it is not clear how the time-
counter method could be extended to parcels with different numbers of droplets. Without
such generalization, a spray collision algorithm has limited utility.

A new approach to modeling droplet collisions based on the NTC algorithm is pro-
posed. The NTC algorithm has been used by Abe [8] and Alexander and Garcia [9] in
gas dynamics simulations. This algorithm has a computational cost linearly proportional to
the number of computational particles and reduced variance when compared to the time-
counter method. The technique randomly chooses a subset of candidate particles from
the cell. These particles are then considered possible collision partners and are accepted
with a probability proportional to their relative velocity and cross section. In the current
work, the NTC approach will be generalized for the case of differing values ofq and ap-
plied to test cases. Finally, an implementation into a multidimensional spray model will be
presented.

THEORY

The following derivation is a new way of showing the mathematical basis of the NTC
method. The derivation also gives a final result that is generalized for the case of varying
numbers of drops per parcel. A final check shows that the new scheme also gives the correct
number of collisions, on average, for each “class” of particle. The “class” refers to a region
in the droplet velocity and radius space.

If a cell containsN droplets, which have a collision cross section given by Eq. (2), then
the expected number of collisions in the cell over a time interval of1t is given by summing
the probability of all possible collisions:

Mcoll = 1

2

N∑
i=1

N∑
j=1

vi, jσi, j1t

V− . (4)

The factor of one-half is a result of symmetry. If we group the individual droplets into
parcels having identical properties, then the double summation becomes

Mcoll = 1

2

Np∑
i=1

qi

Np∑
j=1

qj
vi, jσi, j1t

V− , (5)

whereNp is the number of parcels in the cell. Evaluating this summation directly would be
as expensive as the Kac method, with the cost on the order ofN2

p . However, this summation
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can be modified by pulling a constant factor outside the summation:

Mcoll = (qvσ)max1t

2V−
Np∑

i=1

qi

Np∑
j=1

qj vi, jσi, j

(qvσ)max
. (6)

The value of(qvσ)max is used for scaling the selection probability of a collision. The value
chosen must be sufficiently large that the following restriction holds:

qj vi, jσi, j

(qvσ)max
< 1. (7)

Now it is assumed that a representative subsample of parcels may be randomly selected
from the set of parcels in the cell, such that

aNp∑
i=1

xi = a
Np∑

i=1

xi , (8)

wherea≤ 1 andxi is a characteristic of each parcel. Hence, a subset of the parcels is used to
represent the larger population. This statistical approximation allows a constant multiplier
to reduce the limits of summation. Using this relationship, the limits of the summations in
Eq. (6) are both reduced:

Mcoll =
Np

√
(qvσ)max1t

2V--∑
i=1

qi

Np

√
(qvσ)max1t

2V--∑
j=1

qj vi, jσi, j

(qvσ)max
. (9)

This equation is written more succinctly by defining the quantityMcand:

Mcand=
N2

p(qvσ)max1t

2V− . (10)

This definition is used in the limits of the summation of Eq. (9).

Mcoll =
√

Mcand∑
i=1

qi

√
Mcand∑
j=1

qj vi, jσi, j

(qvσ)max
. (11)

This equation is the final expression of the NTC method for application to parcels represent-
ing varying numbers of drops. Equation (11) is mathematically equivalent to the summation
of Eq. (5). The difference is how one evaluates the summations. Equation (11) includes a
summation overMcand terms, while Eq. (5) includes a summation overN2

p terms. Both
Eqs. (5) and (11) are statistical representations of Eq. (4).

In the limit of constant cross section and constantq, Eq. (11) reduces to the expression of
Alexander and Garcia [9]. The overall cost will be proportional to the product of the limits
of the summation, namelyMcand. The value ofMcandis linearly proportional toNp, because
q goes as 1/Np. The user of this model must make a sensible choice for(qvσ)max for the
algorithm to be efficient. If the spray is so dense thatMcand> N2

p/2, then direct calculation
of collisions may be more efficient than the NTC algorithm for this cell.

The double summation of Eq. (11) is evaluated using an acceptance–rejection scheme.
The number of candidate pairs given byMcand is selected with replacement from the cell
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population. Because the parcels are selected with replacement, multiple collisions per time
step may occur between parcels. O’Rourke has observed that the consideration of multiple
collisions is required for accurate results with large time steps in dense sprays [5].

After a pair has been selected, a uniform deviate from [0, 1) is used to determine if
the candidate pair actually collides. A collision takes place between parcelsi and j if the
deviate,r , satisfies the inequality

r <
qgvi, jσi, j

(qvσ)max
. (12)

The variableqg represents the greater number of droplets betweenqi andqj . If the collision
is accepted, thenql , the lesser number of droplets, actually participates in the collision.
This distinction is important in the case of droplet coalescence, where one parcel of drops
absorbs the other. The differentiation of the parcels by the larger and smaller values ofq
does not change the expected outcome of the scheme.

This differentiation is a subtle point that occurs only when the NTC method is ap-
plied to systems with varying values ofq. The number of possible collisions is limited
by the lesser number of droplets. However, the chance that collisions occur depends on
the greater number of droplets. Thus, if the collision is accepted, onlyql collisions occur.
Because of this distinction, Eq. (11) is written with one of theq terms outside the inner
summation.

The NTC scheme is much more efficient than direct integration for large numbers of
parcels in sparse sprays. The basic idea is shown in the Figs. 1–3. These figures represent
the chance of droplet collisions in a cell containing seven parcels. Omitting the trivial cases
of a parcel colliding with itself, there are 21 possible collision pairs, as shown in Fig. 1.
A direct integration scheme would scan through all 21 possible pairs of parcels, checking
each for collision. The NTC scheme estimates the maximum chance of collision, shown
by the horizontal line in Fig. 2. This maximum is a quick and approximate calculation that
impacts the speed of the code, but not the final answer.

The maximum probability is used to reduce the number of pairs considered for collision.
The number of pairs actually considered for collision isMcand. The number of pairs indicated

FIG. 1. Chance of collisions for 20 pairs of parcels.
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FIG. 2. The chance of collisions is bounded by an approximate estimate of the maximum, as shown by the
horizontal bar.

by Mcand is selected at random, with replacement. Each of the pairs is tested for collision
using the probability shown in Fig. 3. The probability is scaled up by the same factor used
to reduce the number of collision pairs. The end result is, on average, the same as if the
whole distribution shown in Fig. 1 were sampled directly.

The derivation of Eq. (9) guarantees that the average total number of collisions processed
will be correct. It can further be shown that the average number of collisions processed for
any two classes of drop is correct, where each class is identified by its velocity and drop
size. For any two classes of particle represented by parcelsi and j , the expected number of
collisions between the two classes over a short time interval is

M12 = q1q2v12σ121t

V− . (13)

We now consider the prediction of the NTC scheme. The expected number of times that
computational particles from classi and j will be selected is equal to the probability of
the selection multiplied by the number of candidate pairs. The probability of selectingi
and j from the candidates is 2/N2

p because there are two ways to select these two particles

FIG. 3. The reduced sample space used by the NTC method. The number of pairs considered has been scaled
down, and only seven possible pairs will be considered. Similarly, the chance of collision for these pairs has been
scaled up, and each pair is more likely to be accepted.
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from the Np possible combinations. The number of candidate pairs is given by Eq. (10).
The product of these two quantities is the expected number of times thati and j will be
considered as collision partners,Nsel.

Nsel= (qvσ)max1t

V− . (14)

Given thati and j are selected candidates, the expected number of collisions to be processed
is ql multiplied by the probability of acceptance. The probability of acceptance is given by
Eq. (12). So the expected number of collisions, given thati and j are selected candidates, is

Nexp

Nsel
= ql

qgvi, jσi, j

(qvσ)max
= qi qj vi, jσi, j

(qvσ)max
. (15)

The product of Eqs. (14) and (15) recovers the expected number of collisions betweeni and j :

Nexp= qi qj vi . jσi, j1t

V− . (16)

Thus, this scheme produces the correct expected number of collisions, on average, for
any two classes of particle as well as the correct total number of collisions. This derivation
is sufficient to demonstrate the consistency of this usage of the NTC method. The derivation
also reveals a subtle point that is often overlooked in applying the NTC method. The correct
result given by the NTC method in Eq. (16) requires the probability of selecting bothi
and j to be 2/N2

p . The implication of this assumption is that both parcels are selected with
replacement, allowingi and j to occasionally indicate the same parcel. In contrast, the
implementations given in Garcia [10] and Bird [7] do not allowi to equal j . Fortunately,
the significance of this error is small if the number of parcels in the cell is large.

VALIDATION

To test the cost of the NTC scheme and verify the correct result, the algorithm has been
compared to analytical solutions and to O’Rourke’s scheme. The analytical solutions were
derived for this purpose and are simplifications of realistic problems. The test cases are
used to check the overall prediction of the number of collisions, the computational cost,
and the temporal and spatial order of accuracy of these schemes. The formal accuracy of
O’Rourke’s model has never been reported.

The first test case was spatially uniform, with a range of drop size, velocity, and number
of drops per parcel. To test the total number of collision predictions, it was sufficient to
calculate the number of collisions for a single time step. The effects of the collisions were
not considered, only the number of collisions between various velocity and size classes. The
consideration of realistic collision outcomes would make it much more difficult to obtain
an analytical solution. Furthermore, the improvement of the present work is directed only
at predicting the incidence of collision. O’Rourke’s models of the outcomes of collision
can still be used with the NTC method [5].

The test case was a distribution ofN drops over a cylindrical volumeV−. The drops were
given sizes from [0,rmax) and velocities in the axial direction from [0,umax). The size and
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velocity were chosen independently based on a uniform deviate. The expected number of
collisions was calculated from the integral of the collision probability over the size and
velocity space of each possible partner. The integral is

Mcoll = N21t

2V−

rmax∫
0

rmax∫
0

umax∫
0

umax∫
0

fu(u1) fu(u2) fr (r1) fr (r2)|u1 − u2|π(r1 + r2)
2 du1 du2 dr1 dr2. (17)

The functions f represent the probability distribution functions, which in this case are
simply uniform distributions. The evaluation of this integral gives the following expected
number of collisions:

Mcoll = 7π1tumaxr 2
maxN

2

36V− . (18)

A simulation was run with a volume of unity represented by a single cell. Because the
test problem was spatially uniform, there were no concerns about spatial resolution. The
parcels were randomly assigned a radius from zero to 5× 10−5 and velocities from zero to
102. The number of droplets per parcel was also randomly assigned, based on how many
parcels were used for the calculation. The parcels represented a total of 108 droplets. The
simulation consisted of a single time step of 10−4.

The most important difference between the two approaches may be seen in Fig. 4. This
figure shows a comparison of the cost of each scheme using a single-processor 100-MHz
computer. For the numbers of parcels used in this test case, the NTC method is orders
of magnitude faster than the O’Rourke method. The cost of O’Rourke’s method shows
a quadratic dependence on the number of parcels, and the NTC method shows a linear
dependence. For clarity, an enlarged view of the cost of the NTC method is shown in
Fig. 5.

FIG. 4. The computational cost of each scheme is plotted versus the number of parcels for comparison. The
cost of O’Rourke’s scheme increases quadratically with the number of parcels. See Fig. 5 for a clearer presentation
of the cost of the NTC scheme.
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FIG. 5. The computational cost of the NTC scheme is plotted versus the number of parcels. The cost increases
linearly with the number of parcels.

Figure 6 shows the average error in the predicted number of collisions for the new NTC
method and for the O’Rourke method. The error, as defined by

ε = |Mtheo− Msim|
Mtheo

, (19)

was averaged over 50 independent runs for each data point.Mtheo is the prediction of
Eq. (18), andMsim is the prediction of the numerical scheme. Both schemes are Monte

FIG. 6. The average error of both schemes is plotted versus the number of parcels. The error is defined in
Eq. (19) and is averaged over 50 simulations for each data point. The average error decreases with the inverse
square root of the number of parcels.
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Carlo methods and show the characteristic convergence based on the inverse of the square
root of the number of parcels. The results show that both schemes are converging to the
theoretical answer as the number of parcels increases. The random variance of the two
schemes is comparable.

Both schemes were tested against a transient analytical solution to determine the order
of temporal accuracy. Note that neither this test nor the spatial test below measures the
accuracy of the Lagrangian particle tracking scheme. These tests only indicate the accuracy
of the predicted number of collisions. A single cell was used, but this time the outcome of
the collision was considered so that a transient response could be observed. The droplets in
the initial population were all of one size, with a radius ofr0. The velocity of the droplets
was bimodal, given by the following probability density function:

fu(u) = 1

2
δ(u− u0)+ 1

2
δ(u+ u0). (20)

The δ in Eq. (20) represents the Dirac delta function. The probability density function
was only applied to one component of velocity; all others were set to zero. The value ofq
was constant for all drops.

The collision outcome was contrived to resemble droplet coalescence and to allow a
closed-form solution. All collisions resulted in the elimination of one parcel, chosen at
random from the pair. For a discussion of realistic collision outcomes, see O’Rourke [5].
Though the particles had nonzero velocities, their positions were not updated between time
steps because of the spatial homogeneity of the problem. This situation produces a decay
in the number of droplets due to collision. Because one colliding parcel is removed from
the calculation and the other parcel is unchanged, the probability distribution functions for
size and velocity are constant with respect to time. The solution for the number of droplets
remaining at timet can be found analytically to be

N(t) = N0

1+ t/t∗
. (21)

The time scale,t∗, is defined as a combination of physical problem parameters as

t∗ ≡ V−
2πr 2

0 N0u0
. (22)

The quantityN0 is the number of droplets at the beginning of the simulation. The error
for this test case was based on the absolute value of the difference between the numerical
and analytical predictions at timet . Random variation was not anticipated to be an issue,
because the calculation is a multistep integration. Ten thousand parcels were used to further
suppress statistical fluctuations. The results, showing first-order temporal accuracy for the
NTC method, are shown in Fig. 7. First-order accuracy is the best that can be expected for
most stochastic collision routines, since complicated collision outcomes preclude the use of
implicit methods. The method of O’Rourke shows less than first-order temporal accuracy
for small time steps. This lower accuracy may be evidence of slightly higher statistical
scatter in transient problems. Unlike in the previous steady-state test problems, collisions
can change a parcel in this case. Since O’Rourke’s method loops through parcels in the
same order every time step, some parcels will consistently come first in the loop, and others
will consistently come later.
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FIG. 7. This figure shows the error in a temporal calculation over a time interval oft/t∗ = 0.785. The error
is defined as the difference in the analytical and numerical prediction in the number of droplets at the end of the
time interval.

The parcels that come later in the loop will always have fewer possible collision partners,
due to the results of the previous collisions. The NTC method demonstrates first-order
accuracy for the complete range of time steps. Because collision partners are chosen at
random in the NTC method, it is unlikely that the order of storage could effect the outcome.

As a test for spatial accuracy, another test case was constructed. This problem domain
was a three-dimensional cube with a volume of unity. The size, velocity, and number of
droplets for 20,000 parcels were selected from uniform probability density functions, as
in the problem described by Eq. (17). However, they position of the parcels was chosen
to produce an exponential distribution of number density, as given by the function in the
equation

n(y) = nmaxexp(−αy). (23)

and shown in Fig. 8. The parameterα controls the degree of spatial nonuniformity in the
problem. For the current work a value of 10.0 was used, producing a highly nonuniform
distribution. The value ofnmax is calculated from the total number of droplets in the domain.
The x andz locations of parcels were chosen from a uniform distribution. The analytical
prediction for the number of collisions over the domain was derived by integrating the
number of collisions predicted by Eq. (17) for a differential volume. Integrating over volume
for the number density given by Eq. (23) gives the predicted number of collisions over a
given time interval for a cube with one corner at the origin and the diagonally opposite
corner at(1x,1y,1z) as

Mcoll = 7πumaxr 2
maxn

2
max1t1x1z

72α
[1− exp(−2α1y)]. (24)

Five computational cells were used in thex direction, one cell was used in thez direction,
and varying numbers of cells were used in they direction. Twenty thousand parcels were
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FIG. 8. The probability density function for the distribution of drops is plotted versus they coordinate. The
value ofα is 10.0, producing a highly nonuniform distribution.

used for each calculation. The error was defined to be the average number of collisions
predicted by 50 simulations compared to the analytical prediction.

Because the droplets are considered to be uniformly spread throughout a computational
cell, underresolved simulations tend to underestimate the number density of the droplets.
This causes underresolved simulations to underpredict the number of collisions. When
spatial variations are sufficiently resolved, the NTC scheme is second-order accurate in
space. This result may be seen in Fig. 9. Due to the very high cost of running O’Rourke’s
scheme with a large number of parcels, only the NTC scheme was tested for spatial
accuracy.

FIG. 9. The spatial error of the NTC scheme is plotted versus the cell size in they direction. For sufficiently
resolved cases, the scheme is second-order accurate in space.
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IMPLEMENTATION INTO A MULTIDIMENSIONAL CODE

Spray simulations require modeling of the gas phase and its interactions with the spray.
Correct implementation is quite difficult and requires special attention. A discussion of how
the previously described NTC method should be applied follows. This new implementation
is divided into five major portions:

1. Creation of a collision mesh.
2. Grouping of the parcels by their mesh location.
3. Cell-by-cell identification of the optimal method of calculating collisions.
4. Calculation of the incidence of collision.
5. Calculation of the outcome of each collision.

These five portions will each be described in detail. The entire algorithm will then be applied
to some test cases, and the results will be compared to O’Rourke’s algorithm.

1. Creation of a Collision Mesh

In O’Rourke’s algorithm, only parcels within the same computational cell are allowed to
collide. This approach is second-order in space, but suffers from the fact that gas-phase cells
are usually much too large for sufficient spatial resolution. The results tend to be severely
grid-dependent. Figure 10 shows a calculated hollow-cone spray in a dense gas environment.
The dense ambient gas retards the expansion of the spray, increasing the number density and
the significance of droplet collisions. The same spray is modeled on a Cartesian mesh and
a polar mesh. Note that the entire shape of the spray is changed by the grid. The Cartesian
mesh turns the hollow-cone spray into a “clover-leaf” shape.

The clover-leaf artifact is a result of the correlation between the droplets’ velocity and
position. Droplets that have trajectories of almost 90◦ apart can be located in the same cell
of a Cartesian mesh near the spray origin. The relative velocities between these parcels are
very large, and so collisions are very likely. The postcollisional velocities tend toward a
mean velocity halfway between the original velocities because of coalescence and inelastic
bouncing. The polar mesh provides better resolution in the azimuthal direction and does not
permit this artifact to form. In comparison, the Cartesian mesh only resolves the azimuthal
direction in 90◦ increments.

FIG. 10. A hollow-cone spray calculated using O’Rourke’s method on a polar mesh (left) and a Cartesian
mesh (right). The spray is directed toward the viewer. The physical situation is the same for both cases; only the
mesh differs.
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According to current modeling methodology, droplet collisions have no connection to
the gas phase. Hence, there is no reason to rely on the gas-phase mesh. The new implemen-
tation creates a polar collision mesh around the spray for optimal accuracy. By making the
mesh polar, the azimuthal direction is better resolved, and parcels are grouped with more
appropriate collision partners. The use of a cylindrical collision mesh assumes that only a
single spray is present. In the case of multiple sprays in the calculation, it would be possible
to have several independent collision meshes if the sprays do not interact. However, in the
most general case of multiple sprays that can interact, another grid strategy is required.

To further suppress numerical artifacts, the orientation of the collisional mesh is randomly
rotated each time step around the axis of the injector by an angle from zero to 2π . This
guarantees that azimuthal cell boundaries will change each time step. Due to the change of
parcel locations, the radial and axial cell boundaries will also change each time step.

The extent of the collision mesh is dictated only by the location of the parcels. The mesh
need not include parts of the gas-phase domain that do not contain droplets. Additionally,
boundaries are of no concern because they do not directly affect droplet collisions. Because
the collision mesh is polar, the collisional domain is naturally shaped like a cylinder. The
axis of the cylinder is the axis of the atomizer. Thus, the position of each parcel is measured
using a polar coordinate system determined by the location and orientation of the injector.

The size of the collision mesh cells can be optimized so that the cells are sufficiently small
to capture important spatial information, yet large enough to have a statistically adequate
number of parcels in each cell. After the number of parcels is counted and the furthest extent
of the parcels noted, the mesh resolution is set so that the average number of parcels in each
cell is about 5 to 10. This algorithm will then produce cells with a large number of parcels
in cells in the dense regions of the spray where collisions are more important. In dense
regions of the spray, it is desirable to have at least 20 parcels per cell. The sparse regions of
the spray will have few parcels per cell, but will also have extremely low collision rates. A
view of a collision mesh is shown in Fig. 11.

This linkage of the number of parcels to the collisional mesh means that it becomes
imperative that the calculation contains a sufficient number of parcels. If the user chooses a
large number of parcels, then the calculation will demonstrate good statistical representation
of the spray as well as good spatial resolution. If the user fails to use enough parcels, then
the calculation will fail in both respects. Fortunately, the current algorithm as a whole is
much faster than O’Rourke’s collision model, and so the calculation can use a large number
of parcels without significant penalty.

Once the collisional mesh is established, it is inexpensive to identify which cell a parcel
resides in, due to the regularity of the mesh. The axial, radial, and azimuthal location of the
parcel can easily be translated intoi, j , andk indices or into a cell identification number.
This information is used for grouping the parcels into cells, as described below.

2. Grouping of the Cells by the Mesh Location

In the original implementation of O’Rourke’s collision model, the algorithm looped over
all possible droplet pairs and performed a test to see if the two parcels were in the same cell.
Only when the two parcels were located in the same cell were they considered collision
partners. The cost of this check is proportional to the number of parcels squared.

In the present algorithm, the parcels are sorted by their collision cell before any consid-
eration of collision. This step is required for the NTC algorithm, which requires knowledge
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FIG. 11. A collision spray mesh. The lines of constant radius are omitted for clarity.

of the parcels that reside in a given cell. Grouping the parcels together by their cellular
location has another advantage as well: looping over all possible collision partners becomes
much cheaper because the loop limits only span the parcels of one cell. Looping over colli-
sion partners is required for the direct calculation of collisions. The direct consideration of
collision calculations using the grouping information will be referred to as direct single-cell
collision (DSCC) calculation and is discussed in the next section.

The grouping process can be achieved very quickly with two loops through the number
of parcels [10]. A pointer array that indicates which parcels are in which cell is created.
During the first loop, the number of parcels in each cell is counted. An indexing array is
filled with pointers to a parcel identification array. The indexing array is packed with the
location within the parcel identification array of the first parcel in each collisional cell.
Then another sweep is made and the parcel identification array is filled with pointers to the
individual parcels. This storage structure is illustrated in Fig. 12.

FIG. 12. Storage and sorting of parcel and cell information.
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With this storage system, the code can access the list of parcels contained in any given
cell. The code looks in the indexing array to find where a cell’s storage begins in the particle
identification array. The beginning of the cell’s storage is explicitly stored in the indexing
array, and the end of the storage can be found by looking where the next cell’s storage
begins. Then the pointers to parcels are used to access parcel information with indirect
addressing.

3. Cell-by-Cell Identification of the Optimal Collision Algorithm

The current algorithm chooses between two methods of calculating the incidence of
droplet collision. The NTC algorithm is usually cheaper for sparse cells, and the DSCC
method may be cheaper for dense cells. DSCC integration refers to the consideration of
collisions between every possible parcel within a cell. This differs from O’Rourke’s method
because the code does not have to scan through all parcels. The DSCC integration method
is the same as O’Rourke’s method but takes advantage of the cell grouping information.

To see the effect of the grouping on the computational cost of direct collision calculation,
consider the following example. LetN parcels be located in a domain withNc collision
cells. To loop over all possible collision partners without grouping requiresN2/2 iterations.
If the parcels are grouped by cell, then each cell will have, on average,N/Nc parcels. A
loop over all the possible pairs within the cell would requireN2/N2

c iterations. If this is
repeated over all the cells, then the cost is roughlyN2/Nc. However, in the creation of the
collisional mesh, the mesh size was set so that the average number of parcels per cell was
equal to a constant from 5 to 10. Thus,N/Nc is a constant, and the computational cost of
looping over all possible collision pairs is linearly proportional toN.

Using the DSCC method, the code must consider collisions betweenNp parcels in a cell
for a cost proportional toN2

p/2. The cost of the NTC method is proportional to the quantity
Mcand defined in Eq. (10). The constants of proportionality are believed to be similar. So
on a cell-by-cell basis, the code scans through collision cells, estimating the cost of each
algorithm. The cheaper method is identified by comparingN2

p/2 to Mcand. There is an
alternative interpretation of the criterion that clarifies the meaning. The criterion for using
the DSCC method can be written as

Mcand>
N2

p

2
. (25)

Using Eq. (10) and some algebraic manipulation, this is rewritten as

(qvσ)max1t > V−. (26)

This alternative form shows that the decision is actually a measure of how well the spray
is being resolved. The inequality compares the swept volume of one parcel to the volume
of the cell. Thus, the DSCC method may be used when the spray is poorly resolved by the
number of parcels (q is large), when the time step1t is greater than a collision time, or
when a poor choice of(qvσ)max is made.

The DSCC method is cheaper when the spray is very dense or is underrepresented by
the number of parcels. In such an extreme case, the fundamental assumptions of the DSMC
treatment are in doubt [3]. The expected number of parcels participating in collisions is
very large and may be a result of very high numbers of droplet collisions per time step.
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Alternatively, the number of droplets per parcel may be too large, causingMcand to be
greater than the number of parcels in the cell. In the latter case, the user should increase
the number of parcels used in the collision calculation. Finally, the DSCC method may be
cheaper due to a poor estimate ofMcand. In any case, the DSCC method should be cheaper
than the NTC scheme only for a few cells in the densest part of the spray. Otherwise, the
simulation should use a smaller time step or a larger number of parcels.

4. Calculation of the Incidence of Collision

The algorithm scans through each cell calculating collisions between parcels. Depending
on which is faster, the incidence of collision is calculated with either the NTC algorithm
or the DSCC integration. If a large portion of the cells use the DSCC method, then the
fundamental assumptions of sparse sprays probably have been violated as noted above.

5. Calculation of the Outcome of Each Collision

When droplets collide several outcomes are possible, such as bouncing, coalescence,
and shattering. Recent work by Georjon investigated how to model the outcomes of colli-
sion [11]. For the present work, the outcomes of O’Rourke are used [5]. Based on the Weber
number and a stochastically chosen “offset parameter,” the parcels can coalesce or bounce.
The offset parameter is a measure of whether the collision is head-on or relatively oblique.
O’Rourke’s model for inelastic bouncing was used in the current work.

One change has been made from O’Rourke’s collisional outcomes. O’Rourke considered
collisions from the point of view of the larger drop. In coalescence, the larger drop would
absorb numerous smaller drops. However, this approach had a difficulty. Sometimes the
parcel with the larger drops was more populous than the parcel with the smaller drops. The
larger drops would lack a sufficient number of “mates” from the other parcel.

The current implementation notes which parcel is more populous. For coalescence, the
number of drops of the less populous parcel is now subtracted from the more populous parcel.
This method guarantees that there are sufficient mates for executing the coalescence model.

SPRAY CALCULATIONS

The new collision algorithm has been applied to the same hollow-cone spray shown in
Fig. 10. The results are shown in Fig. 13 for Cartesian and polar meshes. The sprays are
no longer severely mesh dependent. They do not display the “clover-leaf” artifact found in
Fig. 10. As an additional benefit of the new algorithm, the calculations with the new collision
algorithm required about 31% less CPU time for a spray and gas-phase calculation with
12,000 parcels. The average number of parcels per cell was set to 5.0. This resulted in
cells in the densest part of the spray with over 100 parcels per collision cell. This number
of computational particles far exceeds the minimum of 20 suggested by Alexander and
Garcia [9].

Even with the improved collision model, there is a slight loss of spray axisymmetry on the
Cartesian mesh due to the resolution of the gas-phase velocity and drag on the drops. The
gas-phase flow, which should be axisymmetric, cannot be perfectly rendered on a Cartesian
mesh. The gas-phase mesh would have to be extremely fine, to an impractical level, to
achieve perfect axisymmetry. However, the new implementation is much better than the
conventional approach of O’Rourke.
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FIG. 13. A hollow-cone spray calculated using the new collision algorithm on a polar mesh (left) and a
Cartesian mesh (right). The spray is directed toward the viewer. The physical situation is the same for both cases;
only the mesh differs.

CONCLUSIONS

The NTC collision scheme has been extended for spray calculations, where the number of
drops represented by a computational parcel varies significantly. This extension of the NTC
scheme was derived from the basic equation for the probability of collision of two drops
in a fixed volume. Comparison of the NTC scheme to an analytical solution showed that
the average error decreases with the inverse square root of the number of parcels. The NTC
scheme was also shown to be first-order accurate in time and second-order accurate in space.
A comparison of computational cost showed that the NTC scheme is much faster than the
standard approach of O’Rourke. The cost of the NTC scheme was shown to increase linearly
with the number of parcels, while the cost of O’Rourke’s method increases quadratically.
Because of the reduced cost, the NTC method will allow computational spray models to use
far larger numbers of parcels and achieve a superior sampling of the droplet characteristics.

Implementation into a multidimensional code has also been described. A special collision
mesh is used to achieve a compromise between spatial resolution and sample size in each
cell. By grouping the parcels into cells, the code can choose the fastest algorithm on a cell-
by-cell basis. The grouping allows the application of either the NTC method or a cellular
form of O’Rourke’s method called the direct single-cell collision scheme. For very dense
cells, the DSCC calculation is faster, and for all other cells the NTC method is faster.
The new implementation is considerably faster than the method of O’Rourke and does not
demonstrate severe grid-dependent artifacts.
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